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ABSTRACT
By studying a large number of real world graphs, we �nd empirical
evidence that most real world graphs have a statistically signi�-
cant power-law distribution with a cuto� in the singular values of
the adjacency matrix and eigenvalues of the Laplacian matrix in
addition to the commonly conjectured power-law in the degrees.
Among these results, power-laws in the singular values appear
more consistently than in the degree distribution. �e exponents
of the power-law distributions are much larger than previously
observed. We �nd a surprising direct relationship between the
power-law in the degree distribution and the power-law in the
eigenvalues of the Laplacian that was theorized in simple models
but is extremely accurate in practice. We investigate these �ndings
in large networks by studying the cuto� value itself, which shows
a scaling law for the number of elements involved in these power-
laws. Using the scaling law enables us to compute only a subset
of eigenvalues of large networks, up to tens of millions of vertices
and billions of edges, where we �nd that those too show evidence
of statistically signi�cant power-laws.
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KEYWORDS
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1 INTRODUCTION AND MOTIVATION
Power-laws are a key component in any characterization of the
networks gathered from the world wide web and other large infor-
mation sources. �ese include web-crawls, online social networks,
recommender systems, and many other examples [20, 29, 41]. �ere
are quite a few places that power-laws may arise in the description
of these networks. For instance, the degree distributions of these
networks are o�en observed to have a power-law. Additionally, the
eigenvalues of these networks are o�en observed to obey a power-
law. Power-laws also arise in other types of structural statistics
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about the networks [48]. Properties of these power-laws are then
used to generate realistic synthetic network models [2, 9] and to
establish theory about why various algorithms work be�er than
expected in networks of this type [16, 24, 32, 34, 58].

Towards these dual goals of building realistic models and generat-
ing useful theory, it is useful to have accurate information about the
presence of power-laws in these real-world networks. �e folk-lore
about this is that networks have a power-law in their degree distri-
bution with exponent between 2 and 3 (see, e.g., [12]). �is �nding
does not always hold [50] and there is even contradictory evidence
that these networks have power-law distributions [33, 51]. More-
over, there is a diverse literature on the implications of a power-law
in the degree distribution for the behavior of the eigenvalues of the
adjacency matrix and Laplacian matrix [11, 26, 43]. �is literature
argues that in speci�c models of a network, a power-law in the
degree distribution implies a power-law in the eigenvalue distribu-
tion. It also hypothesizes that this may hold more broadly outside
the speci�c model.

In this paper, we wish to revisit many of these empirical �ndings
with the goal of providing new guidance on the presence of power-
laws in three features of real-world networks:

(1) the degree distribution;
(2) the singular value distribution of the adjacency matrix;
(3) the eigenvalue distribution of the Laplacian matrix;

We built a large collection of real-world networks from the Stan-
ford project, Facebook, and various other sources (See Section 4
and Appendix A for more about where our data originates.) We
have computed the singular value distribution and Laplacian eigen-
value distribution exactly using a large cluster of high-performance
computers [23]. To each distribution on each network, we �t the
coe�cients of a power-law distribution with cuto� in the tail fol-
lowing the methodology of Clauset [14]. (More speci�cally, we used
the implementation by Nepusz [45], see the details our methods in
Section 3). �is ��ing also included a test of signi�cance, which
allows us to gauge the reliability of the results. We call a power-law
�t signi�cant if it passes this test. �is methodology resulted in the
following observations.

(1) Many networks have a signi�cant power-law in the tail of
the degree distribution corresponding to the largest degree
vertices, as well as the singular values of the adjacency matrix,
and the eigenvalues of the Laplacian matrix. (Section 5.1)

(2) A signi�cant power-law distribution is more likely to occur in
the singular values of the adjacency matrix compared with the
degree distribution. �is means it is more accurate to assume
a model where the singular values of the adjacency matrix
have a power-law compared with the degree distribution.
(Section 5.1)



(3) A signi�cant power-law distribution in the degrees means
there is a high probability for a signi�cant power-law distri-
bution in the singular values of the adjacency matrix and the
eigenvalues of the Laplacian matrix. �e converse does not
hold. (Section 5.2)

(4) �e coe�cients of these power-laws vary from 2 − 10 for all
three distributions (degrees, adjacency singular values, and
Laplacian eigenvalues). �is is a much larger range than has
been observed previously. (Section 6.1)

(5) �e tail of the degree distribution and the Laplacian eigen-
values appear to behave identically and have essentially the
same power-law distribution. �at is, the power-law expo-
nent and cuto� value are almost identical between the ��ed
distributions. (Section 6.1)

(6) �e region of the distribution where the power-law �ts ap-
pears to scale as n2/3 for the degrees and Laplacian eigen-
values and between n2/3 and n1/2 for the singular values.
(Section 6.3)

(7) We use observation 6 to test a number of large networks
beyond those used to make observations 1-6 because it shows
we would not have to compute the entire singular value and
eigenvalue spectra. We �nd these observations hold on eight
graphs up to 2 magnitudes larger than those used to form our
hypotheses. (Section 7)

Overall, these �ndings re�ne our view of the power-laws and
their relationships in real-world data of relevance to the community.

�e presence of a power-law distribution in the singular values
is an extremely powerful analytic property for understanding the
real-world behavior of many types of matrix-based computations
on large social networks (and why we would expect it to be far
be�er than the worst case scenario). We believe the observation
that the power-law in the singular values of the adjacency matrix
is a more consistently observable feature than the power-law in the
degree distribution to be a novel and useful outcome from this study.
We plan to release all of the data and analysis codes necessary to
replicate our �ndings once the paper is accepted.

We discuss additional implications of our results in the �nal
section (Section 8). In comparison with past studies revisiting
power-laws in networks [51], our focus is on the power-laws in
the eigenvalues and singular values across a broad spectrum of
networks. Regarding other conjectures and �ndings about the lack
of power-laws in data [22, 42], we detail a few di�erences in our
methodology in Section 3.4.

We provide the results of our power-law �ts as well as our ana-
lytical tools in the github repository: h�ps://github.com/eikmeier/
powerlaw-spectra.

2 PRELIMINARIES
Our overall methodology is to �t power-law distributions to the de-
grees, singular values of the adjacency matrix, and the eigenvalues
of the Laplacian matrix. We now concretely de�ne these terms to
clarify our speci�c usage. We present a summary in Table 1.

2.1 Power-laws
A set of values x1, . . . ,xk satis�es a power-law if it is drawn from
a probability distribution where p (x ) ∝ x−α for some α . A set of

Table 1: Notation in our paper

A the adjacency matrix
D the degree matrix
L the Laplacian matrix
di the degree of vertex i
dmax the largest degree
n the number of vertices
m the number of edges
p the goodness-of-�t results for a power-law
α the exponent of the power-law �t
xmin the cuto� for values in the power-law �t

values satis�es a power-law with a cuto� if p (x ) ∝ x−α for all x ≥
xmin. �e second case can be considered to describe a distribution
with a power-law tail. Power-laws appear as linear relationships
on a log-log plot because of the equivalent formulation:

logp (y) = −α logy + c

Traditional methods to test for a power-law �t take advantage of this
relationship and �nd a linear �t in the log-log plot. Unfortunately
this type of graphical method is subject to errors [27]. We elaborate
on a be�er methodology below due to Clauset et al. [14].

2.2 Graphs and matrices
We start by de�ning some notation and basic concepts that we will
use to describe our methods. Let G = (V ,E) be an unweighted,
undirected graph without any loops. (All the graphs we work
with are undirected.) Let |V | = n be the number of vertices and
|E | =m the number of edges ofG . �e adjacency matrix ofG is the
symmetric matrix A, where entry Ai j = Aji is equal to 1 if there
is an edge between vertices i and j, and 0 otherwise. �e degree
of a vertex i , di , is equal to the number of vertices which have an
edge connecting to vertex i . Let dmax be the largest degree. �e
Laplacian of a graph is L = D −A where D is the degree matrix,
which is a diagonal matrix with Dii = di .

2.3 Eigenvalues and singular values
We brie�y review a few facts to contextualize our methods. �ese
topics can be studied in [56] for example. Any real-valued sym-
metric matrix has a set of n eigenvalues and an orthogonal set
of n eigenvectors. �e eigenvalues of the adjacency matrix range
between −dmax and dmax; the eigenvalues of the Laplacian range
from 0 to 2dmax. For a real-valued symmetric matrix, the singular
values are the absolute values of the eigenvalues, so for an adja-
cency matrix, they range from 0 to dmax. Note that power-laws are
not usually described for a mixture of positive and negative values.
For this reason, we look at ��ing power-law distributions to the
singular values of the adjacency matrix and the eigenvalues of the
Laplacian matrix.

3 THE DETAILS OF OUR FITTING
METHODOLOGY

Recall that we are interested in a comparison between power-laws
in the degree distribution, singular values of the adjacency matrix,
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and eigenvalues of the Laplacian. For each distribution, we seek to
estimate the power-law coe�cient α and the cuto� value xmin – as
well as a measure of the signi�cance that we will discuss shortly. To
simplify the se�ing, we consider only undirected, connected graphs
without any self-loops. �us, for any network with directed edges,
we remove the directionality of the relationships, and extract the
largest connected component.

3.1 Computing degrees, singular values, and
eigenvalues

For each resulting undirected graph, we compute the degree dis-
tribution, all of the eigenvalues of the adjacency matrix (and by
taking absolute values, all the the singular values as well), and all
of the eigenvalues of the Laplacian matrix. �e degree distribu-
tion is straightforward. To compute these eigenvalues, we used
the MRRR algorithm as implemented in ScaLAPACK [18, 57], and
executed an eigenvalue computation using a cluster of high perfor-
mance computers at Sandia National Labs where we could load the
entire matrix as a dense matrix and execute the O (n3) algorithm
to �nd them. We are currently in the process of describing these
computations in more detail [23].

At this point, we have three collections of non-negative values:
the degrees, the singular values of the adjacency matrix, and the
eigenvalues of the Laplacian matrix. We remove small elements of
the singular values and eigenvalues because the power-law distri-
butions stated above cannot model values of 0. More speci�cally,
due to �oating point approximation, we remove any value that is
smaller than 2−52n.

3.2 Fitting power-law parameters
To �t the power-law parameters, α and xmin, we use the maximum-
likelihood algorithm developed by Clauset, Shalizi, and Newman [14].
Using this method is more accurate than the traditional method of
��ing the slope of the log-log plot. More speci�cally, we use the
implementation by Nepusz [45] that uses the BFGS algorithm to
estimate the parameters. Additionally, this method and so�ware
calculates a goodness-of-�t parameter p that indicates whether the
power-law �t is likely to be signi�cant. �is score is based on a
randomized procedure. If the value p > 0.1, then this is evidence
that the presence of a power-law is justi�ed. We adopt the term
signi�cant to describe power-laws that pass this threshold.

3.3 Exceptions to our methodology
We note that this procedure worked for the vast majority of net-
works we mention in the next section. All told, we ran these pro-
cedures successfully for over 5000 distributions. We were able to
�t the coe�cients of the power-law for every single distribution.
However, the goodness-of-�t computation reliably failed for three
degree distributions (all synthetic networks); thus, we discarded
these results as we cannot be con�dent in their signi�cance. �is is
due to an issue of numerical precision in the so�ware. In any case,
we still have an extremely large database of results to study.

3.4 Critique
�ere are two weaknesses with this study that slightly temper our
conclusions and we wish to address them. First, our observations

1-6 originate with data up to size 300k vertices, beyond which point
it became computationally di�cult to compute entire spectra of
the networks. �ese networks originate from a variety of sources
and include crawled as well as sampled networks. Recently, there
have been studies on potential biases in power-law observations
in networks of crawled data [1, 22, 42], which particularly apply
to smaller networks. �ere are instances where the sampling pro-
cedure applied to the network causes properties to emerge that
are not present in the underlying network [13, 52]. We agree our
methodology cannot distinguish if the power-law originates due to
the network collection methodology or re�ects an underlying phe-
nomenon. Although we note that just because there can be biases
with crawling networks doesn’t mean there will be problems.

To address these limitations, and towards the goal of studying
larger networks, we include experiments on a set of large networks
in Section 7 to investigate what happens for data two orders of
magnitude larger than what we used to generate our hypotheses.
�ese experiments support our observations. Furthermore, two of
our large networks, cit-Patents and wikipedia are generated from a
network data-dump, rather than a crawl.

Second, we wanted to study relationships between these power-
laws, which meant we only used undirected graphs (and removed
direction of edges in directed graphs), and we only considered the
largest connected component. For this reason, existing negative
results may not be directly comparable to ours. Meusel et al. for
example, �nd that the degree distribution of a 3.56 Billion node web
graph does not �t a power-law [42]. Nevertheless, our main interest
is not in terms of power-laws in the degrees, but power-laws in the
singular values and eigenvalues. Independent of the results with
degree distribution power-laws, the observations about power-laws
in singular values appear to be more robust than within the degrees
– which has the potential to be�er inform future theoretical models
of these networks.

4 DATA SETS AND MODELS
In this section, we present an overview on the data we use in our
study. More detail on the source of each dataset is provided in
Appendix A. �ese are all public datasets collected from various
sources including the Pajek so�ware [6], the SNAP collection [36],
and the University of Florida collection [17].

Table 2 shows a quick view on all of our datasets. We have
divided them into a number of groups based on common types
of data. For some types of networks, we have a large number of
samples (Facebook, Erdős, AS, Oregon, P2P), which we expect to be
more highly related than the more general categories, and so these
become their own categories. We also investigate four network
models: graphs with a prescribed power-law degree distribution,
graphs sampled from the copying model of graph evolution, graphs
sampled from the preferential a�achment model, and graphs sam-
pled from the forest �re process.

4.1 Real-world data
At a high level, we break our real-world datasets into three cate-
gories: real-world data where a power-law might be a possibility
(such as in collaboration networks, biology networks, citation net-
works, etc.); a subset of graphs where we do not expect power-law



Table 2: �e types of networks we use in our studies, along
with a rough order of magnitude of the sizes in vertices.

Type Description Sizes

Collab. Co-authorship or collaboration networks de�ned by
co-occurrence in author lists

100-100k

Biology Protein-protein interaction networks 100-10k
Citation Citations or references between a set of papers or other

objections
1k-230k

Fiction Networks drawn from �ctional works 100-20k
Relational A catch-all category for non-speci�c relational links

including recommender system similarities, sports teams,
trust networks, and others

100-20k

Social Networks that model social interactions 100-100k
Tech. Edges represent physical infrastructure including routers

or power grid
5k-200k

Web Hyperlink networks 1k-300k
Word Various types of associations between words 100-100k

Low-dim Networks with low-dimensional geometry (which should
not have power-laws)

100-100k

Facebook �e Facebook 100 collection of networks 1k-50k
Erdős 9 collaboration networks centered on Erdős 100-5k
AS (Autonomous systems) A large set of autonomous sys-

tems networks
100-25k

Oregon Another set of AS networks 10k-11k
P2P (Peer to peer) networks from Gnutella 1k-100k

RPL (Random power-law) Random networks generated with a
prescribed power-law degree distribution

13k

Copying Networks from the copying model of graph evolution 1k-100k
PA (Preferential a�achment) networks 1k-10k
Forest �re Networks generated from a forest-�re process 1k-100k

�ts as the data comes from a low-dimensional space (low-dim).
�ese include road networks and meshes. �e third group is a num-
ber of networks that are more similar (as previously mentioned).

We provide a bit of detail on this third group of networks here.
�e AS type is autonomous systems network of routers on the
internet, with edges as communications between two vertices [37].
�e Oregon graphs are also autonomous systems [36]. Each of the
Facebook networks are social networks where nodes represent peo-
ple, and edges are a “friendship” between two nodes [55]. �e P2P
graphs are peer-to-peer networks from Gnutella, where nodes are
agents and edges are again communication between two nodes [38].
Erdős is a collection of networks of Erdős’s co-authors [6] collected
over a few years.

4.2 Models
We now describe some relevant details about the models as there
are o�en a variety of construction details that can vary, and we
wish to be precise about our methods. Each model has a number of
parameters. We picked parameters to explore a diversity of graphs
generated by each model. We did not �nd any characteristic behav-
ior in terms of the parameters and so we defer that information to
the online data release.

In the copying model, we start with an initial clique graph and
add vertices with the following process. A vertex arrives and picks
a parent vertex uniformly at random. �is new vertex then copies
connections from the parent, but makes mistakes with probability

α . A mistake drops a possible link. �e graph is always undirected,
so nodes can acquire new links via the copying process.

�e forest �re model is similar [38]. We start with an initial
clique. A vertex arrives and picks a parent uniformly at random.
�is new vertex then explores the local neighborhood of its parent
via a forest-�re process that is akin to a randomly truncated breadth-
�rst search. �is process explores each node in the search frontier
with probability q. �e new node generates edges to any node that
is explored in the process.

�e preferential a�achment model is the standard model [4]
where new nodes connect to k-nodes chosen with probability pro-
portional to their degree. �e random power-law models generate
a power-law distribution and then sample a graph using the Bayati-
Saberi-Kim routine [7] with this degree distribution (or a slight
perturbation necessary to ensure a graphical sequence).

5 PRESENCE OF POWER-LAWS
In this section we present the results of the ��ing method on our
data only in terms of whether or not the distributions support a
power-law hypothesis via the goodness-of-�t test. In subsequent
section, we will study these power-laws in more detail. �is section
serves to support the �rst three �ndings we reported on in the
introduction.

5.1 Many classes of networks have power-laws
First, many networks have a signi�cant power-law in the tail of the
degree distribution corresponding to the largest degree vertices,
as well as the singular values of the adjacency matrix and the
eigenvalues of the Laplacian matrix. Table 3 lists the types of real-
world networks and models that were described in the last section.
For each type of network, we list the total number of networks
and how many of each have a statistically signi�cant power-law
�t in the tail of the degree distribution, the singular values of the
adjacency matrix, and eigenvalues of the Laplacian. We also list
how many networks have a power-law distribution in two or more
of those sets.

For example, from Table 3 we can see that of the 18 networks in
category Oregon, 15 (83%) were found to have a power-law distri-
bution in the degrees. Out of those with a power-law distribution
in the degrees, 13 also have a power-law distribution in the eigen-
values of the adjacency matrix, which amounts to 72% of the total
18 networks.

As expected, the low-dimensional networks do not have power-
law �ts. Other classes with only a few signi�cant power-law �ts in
the degrees include: �ction networks, P2P networks and Erdős’s
collaboration networks.

Note that our methodology is not perfectly sensitive as we only
identify 85% of the networks with planted power-law distributions
from the RPL experiments.

Note also that networks are far more likely to have signi�cant
power-laws in the singular values of the adjacency matrix than
the degrees. Striking examples of this include the P2P and Erdős
classes. Exceptions to this include forest �re networks, and random
power-law networks, where this is almost true. �is supports our
point that it is more consistently true that real-world networks
have a power-law in their adjacency singular values compared with



Table 3: For each type of real-world network or graph model, we list the total number of networks, and the number which
have signi�cant power-law �ts in the degrees, adjacency singular value, Laplacian eigenvalues, and combinations.

Distribution Combinations All
Number of
Graphs

Degrees Adjacency
Sing. vals

Laplacian
Eig. vals

Degrees &
Adjacency

Degrees &
Laplacian

Adjacency &
Laplacian

Biology 6 4 67% 6 100% 5 83% 4 67% 4 67% 5 83% 4 67%
Citation 6 4 67% 6 100% 5 83% 4 67% 4 67% 5 83% 4 67%
Collab. 13 5 38% 8 62% 5 38% 3 23% 4 31% 3 23% 2 15%
Fiction 3 1 33% 2 67% 0 0% 0 0% 0 0% 0 0% 0 0%
Relational 6 3 50% 3 50% 4 67% 2 33% 3 50% 2 33% 2 33%
Social 9 7 78% 8 89% 6 67% 6 67% 5 56% 5 56% 4 44%
Tech. 4 3 75% 4 100% 2 50% 3 75% 1 25% 2 50% 1 25%
Web 5 4 80% 4 80% 4 80% 3 60% 4 80% 3 60% 3 60%
Word 10 5 50% 9 90% 7 70% 5 50% 4 40% 6 60% 4 40%
Low-dim 2 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Facebook 100 74 74% 75 75% 80 80% 56 56% 73 73% 62 62% 56 56%
AS 855 831 97% 847 99% 846 99% 823 96% 824 96% 838 98% 816 95%
P2P 9 1 11% 6 67% 2 22% 1 11% 1 11% 2 22% 1 11%
Erdős 7 1 14% 7 100% 1 14% 1 14% 0 0% 1 14% 0 0%
Oregon 18 15 83% 16 89% 12 67% 13 72% 11 61% 11 61% 10 56%
Copying 163 69 42% 120 74% 81 50% 50 31% 60 37% 60 37% 43 26%
Forest �re 188 130 69% 82 44% 135 72% 59 31% 108 57% 60 32% 49 26%
PA 81 66 81% 68 84% 81 100% 53 65% 66 81% 68 84% 53 65%
RPL 20 17 85% 16 80% 18 90% 15 75% 17 85% 16 80% 15 75%

their degrees. �is observation is much weaker for the Laplacian
eigenvalues, for a reason that we will discuss shortly when we
analyze the power-law �ts themselves (Section 6.1).

5.2 Relationships between power-laws
In our second analysis, we study combinations of power-laws. We
only do this for classes of networks where at least 40% of networks
had all three power-laws to avoid drawing conclusions from small
sample sizes. �is removes the classes: Collaboration, Fiction, Tech-
nological, Relational, P2P, and Erdős. We still include the network
models for reference.

We study these relationships in terms of conditional probabilities.
Consider the probability that, given a power-law �t in the degrees,
there is a power-law �t in the singular values of the adjacency ma-
trix; denote this as P[A|D]. In contrast consider the likelihood that
given a power-law �t in the singular values of the adjacency matrix,
there is a power-law �t in the degrees. Denote this as P[D |A]. We
use a similar notation regarding the Laplacian eigenvalues.

We list the probabilities in Table 4. Observe that P[A|D] is almost
always larger than P[D |A] which is to say that a power-law �t in
the tail of the degrees gives a high likelihood for a power-law �t in
the tail of the singular values, but not vice-versa. Similarly P[L|D]
is usually larger than P[D |L], which means that a power-law �t in
the tail of the degrees likely implies a power-law �t in the tail of
the Laplacian eigenvalues. Both of these relationships have been
studied in a variety of theoretical se�ings in graph models such as
the Chung-Lu graphs [12, 19, 43]. Given the diversity of real-world

Table 4: Conditional probabilities that a power-law distri-
bution in one feature gives a power-law distribution in an-
other; D stands for degrees,A stands for the singular values
of the adjacency matrix, and L stands for eigenvalues of the
Laplacian. �e �rst column for example is the probability
that there is a signi�cant power-law distribution in the sin-
gular values of the adjacencymatrix given that there is a sig-
ni�cant power-law distribution in the degrees. For the �rst
group of measurements, we combine the data and compute
probabilities in the summary of Other class.

Type P[A |D] P[D |A] P[L |D] P[D |L] P[L |A] P[A |L]

Biology 1.0 0.67 1.0 0.8 0.83 1.0
Citation 1.0 0.67 1.0 0.8 0.83 1.0
Social 0.86 0.75 0.71 0.83 0.62 0.83
Web 0.75 0.75 1.0 1.0 0.75 0.75
Word 1.0 0.56 0.8 0.57 0.67 0.86
Sum. of Other 0.92 0.67 0.88 0.78 0.73 0.89
Facebook 0.76 0.75 0.99 0.91 0.83 0.78
AS 0.99 0.97 0.99 0.97 0.99 0.99
Oregon 0.87 0.81 0.73 0.92 0.69 0.92
Copying 0.72 0.42 0.87 0.74 0.5 0.74
Forest �re 0.45 0.72 0.83 0.8 0.73 0.44
PA 0.8 0.78 1.0 0.81 1.0 0.84
RPL 0.88 0.94 1.0 0.94 1.0 0.89

data explored here, it is reassuring to see that these theoretical
predictions have meaningful real-world evidence.



Figure 1: Exponents of statistically signi�cant power-law distributions. In the �rst column is the exponent for the degree
distribution, in the middle column the exponent in singular values of the adjacency matrix, and in the third column the
exponent for the Laplacian eigenvalues. �e top row is of the real networks, while the bottom row is of the graphmodels. �e
class “other” includes all small classes of real-world networks where power-laws are common (see the text).

6 ANALYSIS OF THE POWER-LAWS
In this section we consider the exponents of the power-law dis-
tributions, and we elaborate on several observations (points 4-6)
from the introduction. For some of these studies, we wish to draw
conclusions over multiple types of networks. For this reason, we
create a new class of network called “Other” that consists of the
classes Biology, Citation, Social, Web, and Word. (�ese are all
classes where at least 40% of networks had a signi�cant power-law
in all three distributions. �e �ndings are robust to nearby choices
for this 40% threshold and the goal is to exclude classes of networks
that seem to reliably lack power-laws.)

6.1 Characteristics of the power-laws
�e �rst characteristic of the power-law �ts we examine are the
exponents α . In Figure 1 we plot the exponents of power-law distri-
butions in the degrees, singular values of the adjacency matrix, and
eigenvalues of the Laplacian matrix. We consider both real world
networks and models. We see that the majority of exponents of
the power-law distributions vary from 2 − 10, and notice particu-
larly that they are o�en greater than 3, which is much larger than
observed previously (e.g., [12, 50]).

Next, we notice that the exponent for power-law of Laplacian
eigenvalues is o�en nearly identical to the exponent of the power-
law of degree. �is has been conjectured for a variety of mod-
els [19]. Figure 2 shows the relationship between these power-law
�ts, which almost perfectly �ts to the line αLaplacian = αdegree,
matching the theory well outside of its regime where it should
apply. Furthermore, the values for the cuto� value (xmin) in the
degrees and Laplacian eigenvalues are nearly identical. �is is to
say that not only do the power-law �ts have the same exponent,
but they also �t to the same range of values. �us, the tail of the
degree distribution and the Laplacian eigenvalues appear to have
essentially the same power-law distribution.

Finally, we study the conjecture that the power-law in the ad-
jacency singular values should be 2αdegree − 1 when there is a
power-law in both [11]. Figure 3 shows the relationships between
these exponents. We see no hints of this scaling law in the real-
world data. But, both the random power law graphs and the forest
�re graphs show some agreement with this scaling. �us, whereas
the Laplacian result appears accurate, the adjacency result is not.

6.2 Consistency across network samples
Another observation we make is that the power-law distribution
in the singular values of the adjacency matrix o�en appears to be
more consistent when given multiple samples of the same network.



Figure 2: Networks with statistically signi�cant power-law
distributions in their degrees and eigenvalues of the Lapla-
cian matrix. Top row: the exponent of the power-law �t
in the degrees vs. the exponent of the power-law �t in the
Laplacian eigenvalues. Bottom row: the cuto� of the power-
law �t in the degrees vs. the power-law �t in the Laplacian
eigenvalues. On the le� are the real world networks, and
on the right are the models. We plot the line y = x on the
same axes. A few networks are outliers from the line: New-
man’s netscience, biology (protein-protein) network dmela,
and social network Caltech. We could not �nd any common
features of these outliers.

Figure 3: �e exponent of the power-law �t in the degrees
versus the exponent of the power-law �t in the singular val-
ues. We also plot the line αAdj. = 2αDeg. − 1, for comparison
with results in the literature. �e class “other” includes all
small classes of real-world networks where power-laws are
common (see the text).

We illustrate this via studying the density of the exponents over
instances with multiple similar types of networks: Facebook, AS,
and Oregon (Figure 4). We include the models Copying and PA
(preferential a�achment) as well. In the Facebook networks, for in-
stance, the degree power-law exponents vary considerably, whereas
the singular value power-law has a sharp distribution about 4. For
Oregon and Copying, we see similar behavior. For AS networks, the

singular values may have a slightly larger region, the preferential
a�achment networks are a counter-example.

6.3 Behavior of the cut-o�
Our �nal observation about the nature of these power-laws re�ects
the number of entries where the power-law applies. Recall that
xmin is the smallest value contained in the power-law distribution.
Given a cuto� value xmin, we compute the size of the tail of the
distribution, i.e., the number of values larger than xmin. We show
the size of the tail relates to the size of the network in Figure 5
for both the degree and singular value power-laws. (�e Laplacian
power-law will behave almost identically to the degree power-law
based on the discussion in Section 6.1).

�e size of the tail appears to scale as n2/3 in the degree dis-
tribution. A least-squares �t produces essentially the same result
(n0.67). For the singular values tails, the Facebook class shows the
same n2/3 scaling; but the other networks show scaling closer to
n1/2. (�e least-squares �t chooses n0.51). Both of these scenarios
(n2/3,n1/2) indicate a shrinking fraction of the network where the
power-law applies as the network size increases. However, they
also provide useful practical advice about the region where “large
degrees” and “large singular values” lie – which is important to
understand for analyzing algorithms on these networks as well as
designing models.

7 LARGE NETWORKS
�e networks discussed up to this point have been relatively small,
topping out at around 300k vertices. �ere is a computational
hurdle in computing entire eigenvalue and singular value spectra
for graphs with a million or more vertices in that most approaches
need O (n2) memory. Observation 6, however, o�ers an approach:
as discussed in Section 6.3, a lower bound on the number of degrees
or singular values we expect to be included in a power-law tail is
n(1/2) . �is suggests we need not compute all eigenvalues when
testing for a power-law distribution.

We considered 8 large graphs from SNAP [36], MPI [44], and
Wikipedia, listed in Table 5 along with information about the power-
laws in the data. �e friendster, orkut, youtube, �ickr, livejournal
data are all social networks, ski�er is a technological router graph,
patents a citation network, wikipedia a web network formed by
Wikipedia articles and their categories where an edge occurs when
there is a link between a pair of articles. Note that wikipedia,
and patents are created from database dumps rather than crawls,
whereas orkut, youtube, �ickr, livejournal are all crawled. �ese re-
sults support our �ndings from previous observations: the singular
values of the adjacency matrix are more likely to have a power-law
than the degrees. With regards to the cuto�, the vast majority of
values are included in these power-law, with exceptions noted be-
low. �us, these results show that hypotheses formed from graphs
up to 300k vertices are also supported on data 100 times larger.

Details of experiment. We chose to restrict our analysis of the
large networks to the top n(1/2) degrees and top n(1/3) singular val-
ues due to the computational complexity of testing more, and on the
assumption that both of these regions would contain power-laws if
they are present. �e top n(1/3) singular-values of the adjacency
matrix of each network were computed using ARPACK [35] (set



Figure 4: Density estimates of the power-law exponent α for �ve classes: Facebook, AS, Oregon, Copying, and PA. On the
top are the exponents of the power-law �t in the degree distribution, and on the bottom are the power-law exponents of
the singular values of the adjacency matrix. �e singular value exponents are more consistent in 3 of the 5 types (Facebook,
Oregon, Copying), slightly less consistent in one (AS), and more variable in one (PA).

Figure 5: Log-Log plots of the size of the network versus the size of the tail in the power-law distributions, (the number of
values greater than xmin). �e linesn1/2 andn2/3 are given on the sameplot for reference. On the le� are the degree distributions
and on the right are the singular value distributions. �e class “other” includes all small classes of real-world networks where
power-laws are common (see the text).

to a tolerance of 10−8). A power-law distribution was �t using
the pl�t method discussed in Section 3.2. In most cases, the cuto�
(see section 6.3) included all or nearly all of the data points which
we included for testing. Exceptions are the degree distribution of
livejournal and the singular value distribution of �ickr, which only
included about half of the values. �ere is one network, friendster,
for which the pl�t so�ware fails on the degrees when ��ing to
a discrete distribution (see Section 3.3 for a short discussion on
this). We instead �t friendster to a continuous distribution. �is
gives similar parameters to the discrete ��ing procedure in the
other cases we evaluated. �e friendster network is found to have
a signi�cant power-law distribution, but there are only 45 values
greater than xmin.

8 DISCUSSION AND IMPLICATIONS
A power-law in the degree distribution of a network was one of
the hallmarks of the early study on web graphs and other types of
information networks [4]. �is initial focus on power-laws then
led to a number of theoretical studies about the presence of power-
laws in other features of the network including the singular value
distribution and Laplacian eigenvalues [11, 19, 43] – as well as
work critical of this �nding [1]. We have conducted a wide-ranging
evaluation of these conjectured relationships and discovered that:
(i) the presence of a power-law in the largest singular values is
more reliable than power-laws in the degree distribution; (ii) this
power-law o�en applies to at least n(1/2) largest singular values,
and for some classes of networks, up to n(2/3) . Moreover, we �nd



Table 5: Results of �tting a power-law distribution to large
graphs. A power-law was found to be signi�cant with expo-
nent α if it is labeled α∗, and insigni�cant if labeled α−. En-
tries labeled α� are special cases, and discussed in the text.

Graph Nodes Edges Deg. PL Adj. PL
youtube 1.13M 2.99M 2.5∗ 4.2∗

�ickr 1.62M 15.5M 3.89∗ 3.09∗

ski�er 1.69M 11.1M 2.25− 3.5∗

orkut 3.1M 117M 2.62∗ 4.76∗

patents 3.76M 16.5M 4.18∗ 5.19∗

livejournal 5.2M 48.9M 3.3∗ 3.55∗

wikipedia 9.47M 107M 2.46∗ 4.03∗

friendster 65.6M 1.8B 10.5� 5.04∗

compelling empirical evidence of the relationships from [19], which
posits that the Laplacian eigenvalues and the degree distribution
should have similar power-law exponents and behavior. We have
a�empted to address limitations of our methodology by testing
large networks drawn from complete databases as well (Section 7).

Understanding the structure of real world networks allows us to
take advantage of that structure for faster and be�er computation.
In particular, we suspect the results of the reliable power-law in
the singular values to be a useful property for characterizing the
extremely fast convergence of many matrix-based algorithms on
these types of networks. Beyond matrix-based algorithms, there
are a variety of situations where these networks do not elicit worst-
case behavior—for example maximum cliques appear to be easy to
�nd [49]—having insight into the spectra of matrices from these
networks provides another possible avenue to explain these results.
Finally, we found that empirical power-law exponents are far larger
than previously discussed, which may impact how we create ran-
dom networks for statistical tests on networks and the applicability
of existing results on power-law graphs (e.g. [16, 24, 32, 34, 58]).
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A SOURCES OF DATA
We used data from a number of publicly available sources, but
primary among them are the SNAP repository [36], Pajek collec-
tion [6], the University of Florida sparse matrix collection [17], and
the Facebook100 [55]. �ere is overlap and duplication of networks
between these groups. We also used a number of smaller collec-
tions of networks. We have a�empted to cite a large subset of the
suggested sources for the networks we have used.

Small collections. Fictional social networks [3]; Collaboration [10];
Relational (Dictionary) blondel2004-graph-similarity; Biology [30,
53]; Technological [54]; Web [15]; Low-dim. (Mesh) [21].

Newman’s collection [46, 47, 47] lesmis [31]; dolphins [40]
Arenas’s collection: Jazz [25], email [28], PGP [8],

SNAP. We used the following networks from SNAP. Collabora-
tion ca-AstroPh, ca-CondMat, ca-GrQc, ca-HepPh, ca-Hep� [38]; So-
cial email-Enron, soc-Epinions1, soc-Slashdot0811, soc-Slashdot0902,
wiki-Vote [39];Web web-NotreDame [5].

Pajek. We used the following networks from Pajek. Citation
Kohonen, Lederberg, patents main, SciMet, SmaGri, Zewail; Collab-
oration geom; Relational CSPhd, EVA; Technological USpower-
Grid Web California, EPA; Word dictionary28, EAT RS, FA, foldoc,
ODLIS, Reuters911, Roget, Wordnet3.
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